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Abstract 

 
   In an olfaction system (E-Nose) hardware implementation, 
outputs from the GA approach are used as inputs to an intelligent 
neural network system for biochemical detection and decision-
making. In this paper we present a Genetic Algorithm for 
measurement characterization with dynamic inputs. Input 
measurements are from a given range and are assumed in parallel 
from chemical-sensor array. An input 
multiplexer/controller/Analog-Digital converter preprocessing 
stage is used to control these input measurements. The new 
dynamical approach presents measurement characterization and 
also optimum fused measurements without loosing the integrity of 
incoming signals. Through a novel mutation and crossover 
approach (Half Sibling and A Clone) optimum characteristic 
weight chromosomes are achieved. HSAC represents both 
crossover and mutation.  A key feature of the new approach is that 
no pre- assigned minimum error is specified, rather error is 
dynamically evaluated based on measurements. Simulation results 
of the new GA with dynamic measurements are compared with one 
of the approaches from GAlib (A library of genetic Algorithm 
approaches from MIT) and proved the new approach has minimum 
error and a early convergence. MATLAB has been used as the 
simulation tool.  

 
1.   Introduction 

 
   Genetic algorithm (GA) is a search and optimization technique, 
based on evolutionary principle of natural          chromosomes. 
Specifically, the evolution of chromosomes due to the action of 
crossover, mutation and natural selection of chromosomes based 
on Darwin's survival-of-the-fittest principles are mostly used to 
constitute a robust search and procedure. 
   GAs encode each point in a parameter space into a binary bit 
string called a chromosome, and each point is associated with a 
“fitness” value that, for maximization is usually equal to the 
objective function evaluated at the point instead of   a single point, 
GA usually keeps a set of points as a population, which is then 
evolved repeatedly towards a better overall fitness value. In each 
generation, the GA constructs a new population using genetic 
operators such as crossover and mutation; members of higher 
fitness values are more likely to survive and to participate in 
mating (crossover) operations. After a number of generations, the 
population contains members with better fitness values. 
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   In [1], a GA system for optimal sensor measurements was 
proposed. In this system an effective mutation and crossover scheme 
Half Sibling and A Clone  (HSAC) has been developed, simulated 
and implemented. The HSAC approach is applied at various iteration 
levels and kept a dynamic error to a minimum. By this scheme, a 
single converging chromosome value is achieved within 10 iterations.   
The new approach considers input signals as controlled parallel 128 
measurements. Measurement characterization and optimum fused 
measurements without loosing the integrity of incoming signals are 
achieved by assigning initial random weights to each feature of each 
incoming sensor measurement. Vectors of these weights are 
considered the chromosomes in our evolutionary approach. Dynamic 
inputs represent real life sensor measurements (readings from 
biochemical sensor). 
 
2. Basic Operation 

 
   A GA uses the fitness criteria to determine the best choice of 
weights that should be applied to input data in order to achieve 
measurements characterization. GAs randomly select solutions from 
a predefined solution space, and start applying the fitting criteria, 
which is followed by mutation and crossover to obtain the best 
solution according to the fitting criteria. 
   A random population of data is initially created by a   random 
chromosome generator, which is called chromosome population (i.e., 
the solution of space in this case). The population has the size of 64 
chromosomes by 3 genes and each gene constitutes of 2 bits. An error 
fitness criteria is then applied on the population and on the input data 
measurements. In order to calculate the error, calculate the fused 
measurement. The inputs F1, F2 and F3 are given in a range of values 
shown in Fig. 1. Fig. 2 plots the output fused measurement value, 
which is identical to the given range of inputs as shown in Fig. 1.  
The following two steps resemble fitness criteria. Fused measurement 
is calculated using the equation: 
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Y1 x W1 + Y2 x W2 + Y3 x W3 
         YF     =                                                                                     (1)                                                                             and thereby getting 128 elite chromosomes

W1 + W2+ W3 
   The fused measurement calculated, will then be used to find the 
error of the input value with respect to this calculated value. Error 
is calculated using the equation: 

 
Error = | F1-YF | + | F2-YF | + | F3-YF |             (2) 

 
   The calculated error signal is then used to sort the initially 
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The sorted matrix is now available for crossover and mutation. The 
top most chromosome is called as the elite chromosome. Two 
parents are selected sequentially and they are crossovered and 
mutated to get a new child. The GA approach used here is 
represented in Fig. 3. 
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   The crossover and mutation scheme employed here is ‘Half 
Sibling and A Clone’. In HSAC two parents and a random 
chromosome of same dimensions are considered.  One of the 
parent and random chromosome are considered as parents and the 
other parent acts as a decider. If the parent decider bit is 1 it will 
take the new child bit as that of parent else the random 
chromosome bit. This is done for all the bits of the chromosome. 
Block diagram representing HSAC is represented in Fig 4. 
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This is done for all the chromosomes in the matrix. The matrix is now 
replaced by children except the elite chromosome. The algorithm 
goes into a number of iterations to get a single converging value and 
is the elite chromosome. 
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   The equations of the approach are represented in Bäck’s Notation 
[7]. 
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Algorithm. 

Initial  
Matrix 

 
 
 

128 Elite 
values are 

picked from 
different 
matrices 

with 
different 

inputs and 
are stored in 
this RAM 

RAM A 

 HSAC RAM E

RAM B 1 2

(1) I = Space of Individuals drawn from arbitrary sets (vector or 
matrix), AX x AS. 

 HSAC RAM D 

(2) ( )( )δδ Θ=Φ∈∀ ,)(: kafaIa
rrr , Where  

denotes a scaling function as in 

+ℜ→Θ×ℜ II δδ :

( ) { }( ) ( ))(,,( 00 afctPcaf kk )},(|) tPak ∈(min{ af k−•=
rrrr

δ , where P(t) 

denotes the current population and IR - {0}. 0c ∈

Initial 
Matrix RAM C 

(3) The crossover operator }r  denotes a crossover rate of 1 and is a 
one-point crossover. 
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(4) The selection operator is represented by: 
            ))(()( }1,1{ PrsP =Ψ  

(5) S: , the proportional selection operator, samples 
individuals according to the probability density function given by: 
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(6) The termination criterion ι is given by:  
ι(P1(t))  
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(7) |λ|=|µ|. 
 
The following table explains different steps of symbolic formulation: 

 Step  Description 
  Step   1:  Initializing the matrix. 

 Step 2:  Validates the fitness function with linear dynamic  
 scaling. 

 Step 3:  Crossover is performed for chromosomes S  
 and V.  

 Step 4:  Describes the complete process of  

1     0     0     1     0     1 

1 0 0 1 1 1

0 0 1 1 0 1

H
SA

C

1 0 1 1 0 1



3. Simulation Results & Comparison  Population into a subsequent one by applying Genetic  
 operators and selection. 

Step 5:  Represents the rate of fitness function to that of mean  
 fitness function.   

 Step 6:  Represents the termination criteria. 

Step 7: 
 Verifies whether the population size is same or    
 different after application of genetic operators. 

 
   The results of this approach are compared with the results of the 
approach from GAlib (A library of GA approaches from MIT). The 
algorithm was implemented with one of the approaches from the 
GAlib. A table of comparison of the both the approaches are shown 
in table 3. Fig. 5 plots the average error of the present approach and 
Fig. 6 plots the average error of the GAlib approach. From the plots it 
is clear that the error is min and steady in HSAC. The error in GAlib 
approach is not steady. TABLE 1: Symbolic Formulation Description 
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Fig. 5. Avg. Error Vs Iteration Number (HSAC).   
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   The terms in the symbolic formulation are described in the 
following table: 

            Fig. 6. Avg. Error Vs Iteration Number (GAlib). Step Symbols and Description 
Step   
  1: 

I → Space of individuals; AX x AS→ Arbitrary sets. 

Step  
  2: 

Φ → Fitness function; a Element of population;  →
r

Step  
  3: 

S & V→ Chromosomes. 

Step  
  4: 

→Ψ  Generation transition function; s→ Selection 
operator; p→ Population; }r → Crossover (percentage 
crossover, crossover rate) 

11,1{

Step  
  5: 

( )→ New population µµµ IxII →

Step  
  6: 

ι→ Termination; t→ Iteration number. 

Step      
  7: 
 

λ→ Number of children; µ→ Number of Parents. 

 
   Fig. 7 represents the 64 chromosome values after first iteration 
with HSAC approach. Fig. 8 shows the chromosome values after 
first iteration with GAlib approach. From the figures it is shown 
that in both the cases the values are random. 
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TABLE 2: Symbolic Description.               Fig. 7. First Iteration Chromosome Values (HSAC). 
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          Fig. 8. First Iteration Chromosome Values (GAlib). 

    
Fig. 9 and Fig. 10 represent the chromosome values of all 10 
iterations with HSAC and GAlib approaches respectively. From the 
figures it is shown that the chromosome values in HSAC approach 
converge to one single value whereas in GAlib approach the value 
does not converge and continues its randomness. 
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   Fig. 9. Chromosome Values For All Iterations (HSAC). 
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Fig. 10. Chromosome Values For All Iterations (GAlib). 
       
 HSAC APPROACH GALIB APPROACH 

1. The Error rapidly 
decreases and remains 
constant from one 
point. 

The Error is not decreasing 
and is not constant.  

2. The Avg. Error is 
minimum. 

The Avg. Error is more than 
in HSAC. 

3. By HSAC we can find 
the best inputs from 
the given range. 

In this approach we should 
select the inputs. 

4. In HSAC a converging 
chromosome value is 
obtained within ten 
iterations. 

In GAlib approach even 
after ten iterations the 
chromosome value is not 
converged.   

Table 3: Comparison of Approaches. 
 

5.     Conclusions 
 

   The GA using HSAC approach proved to be successful in both 
exploration of new chromosomes and exploitation of the available 
chromosomes. The system proved that it is not restricted to local 
minima. The fused measurement plot is identical to the given input 
range. The gain of the present GA approach is minimum error, 
which is not predefined rather calculated. The GA approach using 
HSAC aided in getting minimum error. The presented GA system 
provides sensor fused measurement and representative 
chromosomes to intelligent Bio-inspired signal processing.  
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